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ABSTRACT

We present a systematic method for constructing boundary conditions (numerical and physical)

of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic

systems. First a proper summation-by-parts formula is found for the approximate derivative. A
"simultaneous approximation term" (SAT) is then introduced to treat the boundary conditions.

This procedure leads to time-stable schemes even in the system case. An explicit construction of

the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the

approach.
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Introduction

Emphasis on the long-time numerical integration of the fluid mechanics equations has increas(ed

in recent years. As a result, high-order spatially accurate schemes are favored, because of their lower

phase error. Such schemes, although they are stable in the classical sense (Lax and G-K-S stability).

may exhibit a non-physical growth in time. For a fixed time T, these schemes converge as the mesh

size Ax --+ 0. However, from a practical point of view, in order to achieve reasonable accuracy for

large T, meshes much too fine for the computers available in the foreseeable future are required.

Since long-time integrations are encountered in present (lay computations, it is important to devise

schemes which are not only classically stable but also time-stable. Specifically, they do( not allow a

growth in time that is not called for by the differential equations.

To retain the formal accuracy of a high-order scheme, boundary closures must be accomplished

with accuracies that are at most one order less than the interior scheme [1]. For the scalar explicit

central-differencing case, Kreiss and Scherer [2] have presented a method for constructing a boundary

condition of accuracy one order less than the inner scheme such that a generalized suinination-by-parts

property of the differential equation is preserved. Strand [3] has used their approach lo construct

in the scalar case, fourth- and sixth-order central-differencing schemes with boundary closures of

the appropriate order such that the resulting expression for 4',e derivative satisfies the summation-

by-parts property. Recent attempts to utilize these boundary closures to numerically solve a 2 x 2

hyperbolic system have shown that, in certain cases, an unwarranted growth in time still results.

In reference [4], the stability characteristic of various compact fourth- and sixth-order spatial

operators were assessed using the theory of Gustafsson, Kreiss and Sundstrom (G-K-S) [5] for the

semidiscrete initial-boundary-value-problem (IBVP). This study showed that many of the higher

order schemes that are G-K-S stable are not time stable. It was concluded that in practical calcula-

tions, only those schemes which satisfied both definitions of stability were of any usefulness for long

time integrations. Of practical importance was a new sixth-order scheme with fifth-order boundary

conditions which was shown to be G-K-S and time-stable. Recently, however, it has been found that

most of the high-order schemes that were time-stable in the scalar case, exhibited time divergence

when applied to a 2 x 2 system.

In this paper, we outline a systematic procedure for designing time-stable, as well as (;-h-S

stable schemes of high-order accuracy. The new schemes are guaranteed to be time-stable for any

hyperbolic system (as long as the system has a bounded energy). The first step in this procedure is

to construct an approximation to the first derivative (internal plus boundary points) that admits a

summation-by-parts formula. We i ly on the work of Strand [3] for high-order explicit formulal ions.

For high-order compact schemes, we derive a new methodology for construction of such scheinies.



Appendix I includes an exposition of the methodology, and a detailed example of the fourth-order

compact central difference scheme with third-order boundary closures. In section 1, we discuss a scalar

hyperbolic equation. We show that in general a summation-by-parts formula does not guarantee time

stability. However, we introduce a new procedure for imposing boundary conditions (simultaneous

approximation term, (SAT)), that solves a linear combination of the boundary conditions and the

differential equations near the boundary. This technique is an extension of the techniques used in

reference [6] to stabilize the pseudo-spectral Chebychev collocation method. It is shown that if the

approximation of the derivative operator admits a summation-by-parts formula then the SAT method

is stable in the classical sense and is also time-stable.

In section 2 we discuss the implementation of the SAT method to systems of hyperbolic equations.

We show that also in the system case, time stability (as well as Lax stability) is assured by having a

summation-by-parts property for the numerical derivative operator, provided that the SAT method

is utilized.

In section 3 we present numerical results that confirm the efficacy of the SAT procedure even in

the cases where previous attempts could not attain time stability. It is shown that the theoretical

predictions for the time stability of the SAT method are realized in practice for both the scalar

hyperbolic case and the 2 x 2 hyperbolic system. Finally, an optimization of the parameter r (which

arises in the SAT procedure) is performed, with regard to efficiency and accuracy.

1. The Scalar Case

We consider the scalar hyperbolic equation

Otu OtU
- = A -< x< (1)

at x
for which there exists the energy rate

_ iI' u 2(xt)dx = A(u2(l't) - u2(O't))dt

For positive A, we have the boundary condition

u(1,t) = g(t)

We denote by u a vector of the unknowns (uo(t), u,(t), ... UN(t)) which corresponds to grid points

x 0(= 0), X,,...XN(= 1).

In this work, we deal primarily with compact schemes for the discretization of the spatial operator

RFr a compact spatial operator, the approximation to the first derivative can be written as

du
P -=Qu (2)

dx
2



where P and Q are (N + 1) x (N + 1) matrices. We further assume that:

Assumption I

(i) Equation (2) is accurate to order m. Specifically, if we denote by v the vector (v(xO, t), ... , V(XN, t)

where v(x,t) E Cm and xj = jAx = N- , and by vx the values of ((L)o,..",(")N)'T then

Pvx - Qv = PTe

where the truncation error T, satisfies

ITel = O(Ax)m

(ii) The matrix P has a simple structure (preferably tridiagonal) and is easily invertible.

(iii) There exists a matrix H, and positive constants pi, p2 independent of N such that

y 1I < HP< •21

specifically, HP is a symmetric positive definite matrix.

(iv) There exists a matrix G = H Q such that G + GT has only two elements: go,o and gN,N.

In general we require go,o < 0 < gN,N.

Assumptions 1 and 2 are common to any useful compact scheme. Assumptions 3 and 4 are specific

to the summation-by-parts requirement for the spatial operator.

Equation (1) is now semi-discretized using formula (2) to yield
du
dt = AP- Qu (3)

Note that assumptions 3 and 4 from above admit a summation-by-parts formula in the sense that

dE 2 +
d = g°'°u° + gN,NUN (4)

where

E(t) = -(u(t), HPu(t)) (5)

In Appendix I we show how to construct a fourth-order compact scheme that satisfy Assumption

I and therefore (4).

Interestingly, equations (4) and (5) were obtained without imposing the boundary conditions. We

will use the summation-by-parts property defined in equations (4) and (5) to construct a scheme
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that admits a decreasing energy norm when the boundary condition is imposed. Note that the

way in which the boundary condition is imposed is important for ninerical stability. The most

common procedure of imposing the boundary conditions (A > 0 ). is to use equation (3) to update

the unknowns Uo, .. UN, followed by overwriting Uax = (t). This procedure accounts for the fact that

in a general hyperbolic system the precise location for each boundary condition is not known umnil

after a characteristic decomposition is performed at all boundaries. This procedure (particilarly if

tH is a nontrivial matrix), may not yield the estimate (4) with UN replaced by !t(/). In short. thlie

imposition of certain boundary treatments may ruin the structure of the summation norm. which

results in a numerical scheme that is not time-stable.

A simple counter-example is presented which demonstrates the necessity of careful booundary

implementation. Consider the scalar equation it ,= u, with the boundary condition ua- g(t). The

semi-discretization in the absence of boundary conditions becomes ut =A 4u. where A =P 1 Q. As

described earlier, once the matrix A is formed, the boundary conditions are imposed. This has the

effect of pre-multiplying the matrix A by the boundary matrix D. Without loss of generality, we use

the boundary condition g(t) = 0 in this problem; the resulting boundary operator is the matrix

D3 = 0 1 0
0 0 0

For time staability, the resulting matrix At = D p-` Q, rather than the matrix A must exhibit a

summation-by-part norm.

For simplicity, we discretize the domain into two even intervals, such that the discrete solution

vector is (aO, 1I1 lt2)T THie boundary condition is impose(l at 112. A first-order discretization that

satisfies the summation-by-parts energy norrn is

[77/48 (-19)/12 (-13)/48 (-25)/16 4 (-39)/16
(-19)/12 32/3 (-13)/12 • : -4 0 -1
(-43)/48 (-13)/12 53/48 [39/16 -. 1 25/16

Note that the matrices 1) and Q sat isfv Pj = pT. anid Qj = _-QT eXCept for qtij) and q22- In

this exani1ple, the mat rix 11 is the identitvy matrix. The characteristic equatlion for lhe P, matrix is

-192A 3 + 2568A2 - 5026A + 501= 0. The symmetry of P3 and the alternating signs of t lie respect i ve
terms in the characteristic polynomial guarantee the positive dHefiniteness of P'{. The discretizatliou

operator A3 = !7' Q:, can be written as



11/1002 (-512)/501 1013/1002
A3  (-55)/:3:34 (-112)/167 279/3:34

2059/1002 (-2560)/501 3061/1002

All the requirements of the sumnmation-by-parts energy norm are satisfied by this discretization, and
a precise energy norm exists in the absence of boundary conditions.

The combined operator At = D3 A3 becomes

11/1002 (-512)/501 1013/1002
A3 (-55)/334 (-112)/167 279/334

0 0 0

for which the characteristic polynomial is -1002A 3 --661A 2 + 176A = 0. The roots of the characteristic
polynomial are A = -0.86317..., and A = 0.20349..., respectively. The numerical solution will grow

in time as a result of the eigenvalue in the right half of the complex plane (RH-P) and will not be

time-stable.

As demonstrated by the previous counter-example, a spatial operator which satisfies the summation-
by-parts energy norm may not be time-stable. Many of the high-order schemes that satisfy the sum-

mation property are time-stable for the scalar case. A notable exception is the sixth-order explicit

scheme with fifth-order boundary conditions reported in the work of Strand [3]. (See Appendix II for

details of this scheme.) For this sixth-order scheme, time stability can be guaranteed only if the last

row and column of the matrices HP and HQ are removed before matrix inversion and multiplication

are performed.

The underlying reason for the growth in time is the imposition of the boundary condition operator,
which has an effect on the structure of the norm matrix P in ut = D P-1 Q. Specifically, D p-i

destroys the structure of the norm P. In the scalar case, this problem can be eliminated in certain

circumstances. For instance, if the matrix P is a restricted full norm, then D P-i still produces a

useful norm by eliminating the zero element. A restricted full norm is defined where the diagonal
is the only nonzero element in the first (or last) row and column of the matrix P (See Strand [3]).

A special case of the restricted full norm is the diagona! case, which is of some practical interest.

Unfortunately, even for cases where P is a restricted full norm, stability cannot be generalized to the

case of a hyperbolic system. An alternative means of imposing boundary conditions must be found

for these cases.

At this point, we introduce the SAT methodology for boundary implementationu. We show in

the following text that the SAT method leads not only to stability but also to time stability for the

scalar wave equations, and this property applies to arbitrary hyperbolic systems. The SAT method
5



involves the indirect imposition of the physical boundary conditions. This is accomplished by adding

a term to the derivative operator, which is proportional to the difference between the discrete value

UN and the boundary term g(t). Thus, we propose the discretization,

du
pd = AQu - rAgNNS(UN - g(t)) (6)

dt

where

S = H-'(0,0,...,0,1)T (7)

Contrary to the common practice of satisfying the boundary condition directly by imposing UN = g(t),

the SAT method involves solving a derivative equation everywhere, including the boundary points.

The extra term which is added accounts for the boundary information to within the accuracy of the

original discretization. Note that the SAT is added not only to the boundary equation but to other

points depending on the structure of the vector S, (which is the last column of the matrix H-').

The extra SAT term does not alter the accuracy of the scheme, since the SAT term vanishes upon

substitution of the analytic solution.

We now demonstrate that the SAT method yields a Lax stable and time-stable scheme. For the

time stability analysis, we take g(t) = 0. We pre-multiply equation (6) by H and use equation (7)
to obtain

HPdu = AHQu - rAgN,N(O, 0, O.., 0, 1)TUN 
(8)

dt

We now define the energy E(t) as in equation (5) to get
dE(t) 222t- goo2 + gN,NUN - TYNNU 

(9)dt '-

With go,o < 0 < gN,N, we can immediately state the following theorem.

Theorem 1.1:

The SAT method presented in equation (6) is both stable and time-stable if

r>1 (10)

In addition to proving the stability of the SAT scheme defined in equation (6), we must show that

the procedure preserves the order of accuracy m of the spatial operator. This is accomplished by a

direct convergence proof showing that the SAT term indeed preserves the spatial order of accuracy.

Denote by v the vector (U(xo,t),...,u(xN, t)) T , i.e. the values of the true solution of (1) at the

grid points. Combining the accuracy condition found in Assumption I with equation (6) we have

dv
p_ = AQv - TAgN,NS [u(XN, t) - g(t)] + PTe (Il)

dt
6



Note that U(XN, t) - g(t) = u(1,t) - g(t) = 0. Now define

E (t) = u(xj, t) - uj(t)

where u3 (t) solves (6) , to obtain

p = AQC - TAgN,NSEN + PTe (12)
dt

where Te is the truncation error defined in Assumption 1. We now use the energy estimate presented

in (9) to obtain
d(c,HPE) < (fHPT,)

dt

"and the inequality

(E, HPT,) < (E, HPc)V/(Te, HPTe)

to obtain

dj/(E,HPE)<
d ) - (TeHPTe) (13)
dt

By assumption I ,the truncation error is of order m, and we get

(E, HPTE) :_ O(Ax) m

which proves the convergence of the scheme.

In conclusion, a precise means is now available for the scalar case to impose boundary condi-

tions that are guaranteed to be time stable, and that preserve the formal accuracy of the original

discretization.

2. The Hyperbolic System

In this section, we explain how to use the SAT method for systems of hyperbolic equations and
show that the resulting scheme satisfies an energy estimate similar to the one obtained for the scalar

differential equation. First the system of differential equations is described.

Let ul and ull be the two function-valued vectors

ux = 1)X t), ..., k)X t))

(14)

7



un (U(k*l), ..., t ( ) ).

that solve the system of differential equations

at xO

(15)

OUT 1 _ ~Ou"I
A" Ox

at a

where A' and A" are diagonal matrices of the form

A' diag(AI,..., Ak)

(16)

A' = diag(Ak+l,..., A,)

In order to impose the boundary conditions we assume that

A1 > A2 >...>Ak > 0> Ak+l > ... >A,

For this case, a well-posed set of boundary conditions is given by

u'(1,t) = Ru"(1,t) + g1 (t)

(17)

u"1 (0, t) = Lu'(0, t) + g1I(t)

Where

gI(t) -(g()(t),... g(k)(t))

and,

g11(t) - (g(k+I)(t),...,g(r)(t))

In equation (17), the matrix R has k rows and r - k columns, while the matrix L has r - k rows

and k columns. Without loss of generality, for the stability analysis we will assume that both g1 (t)

and gTT(t) vanish.

Equation (17) is well-posed for any L and R. However, to guarantee no growth in time some

conditions must be imposed on the matrices L and R. These conditions are

8



Condition I:

ILIIRI < 1 (18)

where the matrix norm is defined by

AI = p(AT A)'

and p(A) is the spectral radius of A.

The Continuous case

It is instructive to establish and prove an energy estimate for the continuous hyperbolic system

although such a proof is well known. The same basic steps that are used in the continuous proof will

be used later in the text to prove the energy estimate resulting from the semi-discrete hyperbolic

system.

Condition I is a sufficient condition for the solution of equation (15) to be bounded in time. In

fact one can state

Theorem 2.1:

Let ul(x,t) and ulI(x,t) be the solution of equation (15) with the boundary conditions (17).

Recall that we take gi = g1, = 0. Suppose that L and R in equation (17) satisfy Condition I. Define

an inner product

(w,7v) = j w(x, t)v(x, t)dx (19)

and an energy function E(t)

E(t) IL (u() ,u(Il) + R I u (20)

i=1 Aji=k+I il

then the time rate of the energy function satisfies

dE 0 (21)
dt -

Proof

We start by differentiating equation (19) with respect to t to obtain

d(u(t), u(?)) W
dt - o

9



Using equation (15) we obtain
d(~ ) 2 u(i)Aiu(')dx
dt - o

so that

d(u('), t()) - Ai(u(i)(1, t) 2 - u(i)(0, t) 2 ) (22)

dt

Differentiating equation (20) and substituting equation (22) we obtain the energy rate for the system

as

dE k t)= t)2) (

dt IL1(u" (l, - ( I IRI(u)(1, t)2 - u()(0, t)2 ) (23)
i=1i=k+l

relating the time rate of change of the energy function to the energy that crosses the boundaries.
Note the change of sign in the second term which results from the negative sign of the eigenvalues
Aj for k < i. We must now quantify the magnitude of the boundary terms in equation (23).

Replacing the sums in equation (23) with the vector operations

k2Tk••U(i)(1, t)2 =uI(1, t)TuI(1, t)

(24)

Su(i)(0, t)2 UI o t) uIo )

imk+l

we can now make use of the boundary conditions in equation (17) to obtain

T I
uI(1,t) u (I,t) = u I(l,t)TRTRu"I(1,t)

(25)

U1,(0, t)TuII(0 , t) = U,(O, t)TLTLuI(0, t)

Substituting the equations (24) and (25) into (23) we obtain

dE = uli1, ( 1t)T{RTRILI -IRIlu i(1,t) + u'(0, t)T ILTLIRI -ILI~u'(0,t) (26)
dt

Because Condition I ensures that

RTRILI - IRII < 0

and

LTLIRI - IILI < 0
10



equation (21) is established. Therefore the continuous energy function E(t) is bounded in time. This

completes the proof of Theorem (2.1).

The Semi-discrete Case

We are ready now to discuss the implementation of the SAT technique for the system in equation

(15) with the boundary condition given in equation (17). As in section 1 we denote by u' a vector of
unknowns (Uto),u), ... U•())T which correspond to the grid points xo(= 0), xI, ... XN(= 1). We assume

that we have matrices P , Q and H such that the scalar case admits a summation-by-parts energy

norm given in section 1. The SAT discretization of equations (15) - (17) is chosen as

du'
P = AiQui- -g,NAirS(i)(u(j) - (Ru"I)(.) - g(i)) 1 < i < k

dt

(27)

p du' = AQu' - go,oAj-rS(i)(u(') - (Lul)(') - g(')) k + 1 < i < r
dt 0

where r is a stabilizing factor to be determined later. As in the scalar case, we choose S(W to be one

of the vectors

SO = H-'(0,0,...,0, 1)T I < Z < k

(28)

S(i) = H-l(lO,...,0,)T k+1 I< < r

We recall from the scalar case that HP is symmetric positive definite and HQ is skew symmetric

except for the terms go,o = (HQ)o,o < 0 and gN,N = (HQ)N,N > 0. Thus equation (27) is well

defined.

Before proving the stability (and time stability) of the SAT method in equation (27), we would like

to comment on the role of the matrix H. Explicit knowledge of H is required for the implementation

of the SAT method, specifically the knowledge of go,o and gN,N as well as the vectors S(W are needed

to implement equation (27). Thus H is not only a theoretical tool (as in reference [2]) but is also of

practical importance.

We are now ready for the stability proof of the SAT method in equation (27). The proof is

analogous to Theorem 2.1 with the continuous integrals replaced by discrete sums. The scalar

product is defined, analogous to equation (19), as

N

(u' , ui) = W UW ulu(29)
1=0

11



A different scalar product to be used later, analogous to equations (24), is

k

i=1

(30)
r

[u", u111], = ( U (i)
i=k+l1

for mi 0, N.

Theorem (2.2)

Let the SAT method defined by equation (27) satisfy Assumption 1, for the discretization of the
hyperbolic system defined in equation (15) with boundary conditions (17), (with gI(t) = gl1 (t) = 0).
Then the discretization is both stable and time-stable provided that

2- 2V1 -RIILI < <+ +2V1- RL31)

IRIILI IRIILL

Moreover, let the discrete energy be defined as

EN(t) = k 1 u HPu2 ) + '-, HPu) (32)
i=1 Aii=k+l jj

where the scalar product (u , u') is defined in equation (29). Then

dEN(t)
dt

Proof

As in theorem 2.1 we differentiate the scalar product (u', HPut) and use equation (27) to obtain
d .
d(u , HPu') = Ai(u, HQui) - gN,NAir(u() - (RuII)(c))(ui, HS()) 1 i < k

(33)

d (u', HPut )= Ai(u, HQu') - gooAjr(uOi - (RuI)(0))(ut, HS(i)) k + 1 i < r

We now use the defiPition of SO) from equation (28) and the properties of HQ from Assumption
I to obtain

dj-(u', H Pui) =

12



goo•,(u~)+ AgNN(U¶i)) - Aj,gN,Nr (Ui)) + AigNU(i2 (Ru1 )')•, I < I < k

(34)

d (u' HPu)
diI(U~~~i))2( ,Ui) + Pg'-u~i) =

-g0,01A( -0 AijgN,N(U(Q)2 + lAijgo,or(ui))2 -- jAIgo,ocoi 4)(Lu')o0), k + I < i < r

Note that in equation (34) we used the fact that the Ai are negative for k + 1 < i < 7". We must

now quantify the magnitude of the boundary terms in equations (34). If the sums in equations (34)
are replaced with the vector operations defined in equations (30) we get an estimate for the discrete

energy rate dEN(t)
dt

de t) _ Ugoo. ' ]o + ILIgu,Iu(l -- 7)[U', U']N + JL19N,N U, lu ]u

(35)

+IRI(r - 1)go,o[u 11 , u1 I]o - IRIYN,N[U", UI]N - go,oIR1r[uII, Lu1]o

Substituting the estimates
[u', RUH]N !5 1U'I N I R IIU"IN
[n", Lul]o <5 lu'"loILIlu'lo

where

lulIl = V[UllUiu .

into equation (35), and collecting like terms yields

dEN(t) < -gN,N{ILI(7 - 1)Iu 112 - rILIIRIIu'INIu"IN + IRIuIU"II1}
dt -

(36)

+go,o IRI(r - 1)ju1112 - rILIIRlnu'IoIu"Io + ILIlu112}

For dEN to be negative we require each curly bracket to be positive. Thus we need

ILI(r - 1)ju'l2 - rILIIRIIu'INIu"IN + IRIuIUIl > 0

and also

IRI(7 - 1)Iu"Il2 - rlLIIRIIu'IoIu"1Io + ILIlu'12 >_ 0

Both inequalities are satisfied if

IRIILIr 2 < 4(r - 1)

and this is equivalent to equation (31). Thus, the proof is established.
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3. Results

Conventional Boundary Conditions

Three high-order spatial discretizations (two explicit and one compact) are the focus of the results

section: the fourth-order explicit scheme with third-order boundary conditions, the fourth-order
compact scheme with third-order boundary conditions, and the sixth-order explicit scheme with

fifth-order boundary conditions. All satisfy the summation-by-parts requirement in the absence of

physical boundary conditions. The fourth-order explicit scheme is reported elsewhere (see [3] or [7]
for specific details) and will not be derived here. The fourth-order compact scheme is new, and

a systematic procedure for deriving both it and other compact high-order schemes is presented in
Appendix I. The sixth-order explicit scheme was first reported in reference [3], but is also included

in Appendix II.

First we demonstrate that all three schemes behave in accordance with their respective order

properties. We then comment with regard to the sixth-order explicit scheme, that satisfying the

summation-by-parts energy norm is not sufficient for time stability.

The model problem used to test the three schemes is the scalar hyperbolic equation

au au
-- + T = 0, 0<x<1, t>0 (37)

u(O,t) = sin 27r(-t), t > 0 (38)

u(x,0) = sin27r(x), 0 < x < 1, (39)

The exact solution is

u(x,t) = sin2ir(x- t), 0 < x < 1, t > 0 (40)

For all calculations, the time discretization used was a fourth-order Runge-Kutta (R-K) method

with the time step small enough such that the temporal errors are much smaller than the spatial

truncation error. In all cases, the boundary condition was implemented at the end of each R-K stage

by overwriting the value of the solution at the boundary point.

Table I shows a grid refinement study performed on equation (37) for all three spatial discretiza-
tions. Both the absolute (log L2 ) error at a fixed time T and the convergence rate between two

successive grid densities are plotted.
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(fourth explicit) (fourth compact) (sixth explicit)
Grid log L2  Rate log L 2  Rate log L2  Rate

21 -0.501 -1.418 1.379
31 -2.080 8.96 -2.133 4.06 1.048 1.88
41 -2.607 4.22 -2.627 3.95 0.137 7.29
61 -3.329 4.10 -3.316 3.91 -1.302 8.17
81 -3.832 4.03 -3.806 3.92 -1.798 3.96

Table I: Grid convergence of three high-order schemes on ut + u3 = 0.

This refinement study suggests that all three schemes are Lax stable (the exact solution is approached

at a fixed time T as mesh is refined) and grid converge consistent with each respective theoretical

rate. The convergence rates for both of the fourth-order schemes asymptote to the theoretical value

of 4. The convergence rate of the sixth-order explicit scheme is sporadic but is approximately 6

(5.28 for the interval between 21 and 81 points). This spurious behavior results from the exponential

divergence of the solution for long times T. At T = 70, the absolute error of the two fourth-order

schemes is comparable; however, that of the sixth-order scheme is two to three orders of magnitude

larger.

These numerical results indicate that the two fourth-order schemes are time-stable; the sixth-

order scheme is not. Nothing in the definition of Lax stability precludes exponential divergence of

the solution for long times T as long as the divergence rate is bounded independently of the grid

used. (See reference [41.) The numerical divergence of the solution results from a spatial operator

matrix which has an eigenvalue with a positive real part (an RH-P eigenvalue). For long times T,

the solution is dominated by this eigenvalue.

To quantify this assertion, a comparison is presented between the numerically observed divergence

rate, and a theoretical prediction from eigenvalue analysis. By assuming that the numerical error can

be represented as fN(t) = fN(O)eONt, a growth rate aN is determined. Similarly, an effective growth

rate as defined by eiMa/t = IGmax(At)IM , is calculated from an eigenvalue determination. (See

reference [4] for details). Table II shows a comparison of the observed growth rate of the sixth-order

explicit scheme with the rate predicted from an eigenvalue determination.

Grid ONumerical a(S,,,z)

21 0.1672 0.1673
31 0.1879 0.1886
41 0.1880 0.1879
61 0.1659 0.1746
81 0.1785 0.1808
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Table II: Numerical vs. Theoretical Growth Rate for the sixth-order explicit.

The agreement is very good, with a slight discrepancy in the comparison on the 61 and 81 grid-point

cases.

The time-divergence seen in the sixth-order scheme is the same as that predicted in the counter-

example presented in section 1. Specifically, numerical time stability is not guaranteed by a dis-

cretization which satisfies a summation-by-parts property. Very specific boundary treatments must

be used to guarantee time stability.

SAT Boundary Conditions (Scalar)

The SAT method for treating the boundary conditions guarantees time stability for the hyperbolic

system. This method relies on a spatial operator that satisfies the summation-by-parts energy norm

for the scalar case and on very specific boundary treatments to ensure time stability.

We begin by showing that the procedure does not destroy the formal accuracy of the spatial

discretization. This result was proven in section 1 for the scalar case. Tables III.a and Ill.b show a

grid convergence study of the SAT method on the scalar wave equation defined by equations (37),

(38) and (39). Fourth-order R-K time advancement is used for all runs with a time step such that

no appreciable temporal error accumulates. All calculations are run to time T = 10. In all cases,

the calculations remained bounded on all grids (and CFL's less than CFLrnar) for times as large as

T = 1000, which indicates time stability. This result is consistent with the results from eigenvalue

determinations in which no RH-P eigenvalues were found.

7= 1 (fourth explicit) (fourth compact) (sixth explicit)
Grid log L 2  Rate log L 2  Rate log L 2  Rate

21 -1.2289 -1.4005 -2.5750
31 -2.0878 4.88 -2.0479 3.67 -3.8300 7.13
41 -2.5784 3.93 -2.5096 3.70 -4.6500 6.56
61 -3.2211 3.65 -3.1689 3.74 -5.7880 6.46
81 -3.6806 3.68 -3.6464 3.82 -6.6056 6.54

Table III.a. Absolute error (log L2) and convergence exponent with SAT parameter r = 1. for the

fourth explicit, fourth compact and sixth explicit spatial discretizations.
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7 = 2 (fourth explicit) (fourth compact) (sixth explicit)

Grid log L2  Rate log L 2  Rate log L 2  Rate
21 -1.3472 -1.8061 -2.7007
31 -2.0866 4.20 -2.4296 3.54 -3.8229 6.37
41 -2.5980 4.09 -2.8773 3.58 -4.6666 6.75
61 -3.3107 4.05 -3.5243 3.67 -5.8518 6.73
81 -3.8145 4.03 -3.9978 3.79 -6.6485 6.38

Table 11I.b: Absolute error (log L2 ) and convergence exponent with SAT parameter r = 2, for the

fourth explicit, fourth compact and sixth explicit spatial discretizations.

A comparison of the SAT grid refinement studies (table II1.a and III.b) with those from the con-

ventional boundary treatment (table I), indicates that the formal accuracy of the spatial operator is

unaffected by the SAT treatment. The proof of stability given in section 1 indicated that a sufficient

condition for stability of the scalar wave equation with the SAT method is 1 < r. The results shown

in tables III.a and III.b indicate that the magnitude of the error is dependent on the value of the

parameter r. To optimize the value of the parameter r for these simulations, the e-ror at T = 10
was studied as a function of r. An eigenvalue code was then used to determine the maximum CFL

of the scheme as a function of r. The results of this study are shown in Table IV.

r log L2  CFL
3.0 -3.8220 1.17
2.5 -3.8221 1.77
2.0 -3.8145 2.07
1.75 -3.8038 2.07
1.50 -3.8833 2.07
1.25 -3.7460 2.07
1.00 -3.6806 2.07
0.97 0.0

Table IV: Absolute error (log L2) and CFL for various values of the SAT parameter T, for the fourth

explicit spatial operator.

Note that a fairly sharp cutoff at the theoretical value of r = 1 is observed for the fourth-order

explicit spatial operator. (Values of 7 = 0.93 and T = 0.99 were obtained for the fourth-order

compact and sixth-order explicit schemes, respectively. In addition, precise agreement was obtained
at the r cutoff between the eigenvalue determination and the numerical simulation of the scalar wave

equation.) For the fourth-order explicit spatial operator, the error decreased monotonically with r.

which suggests that the value of r should be as large as possible. Conversely, the maximum ('FL
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that is achievable with the fourth-order R-K scheme decreases dramatically at r = 2. A value of

T = 2 was determined to be optimal for these studies.

SAT Boundary Conditions (System)

The last part of the validation study is to verify that the SAT boundary procedure ensures stability
for the hyperbolic system. Equation (31) defines sufficient conditions for time stability R-I( 2 -

2 /1 -IRILI) r _< i--(2 + 2 1 - IRIILI) in terms of r and the boundary coupling matrices L

and R. The test case chosen is the hyperbolic system

au au
av Ox

- 0, 0<x_<l >0 (41)
at ax

u(Ot) = av(0, t), v(1,t) =fu(1,t), t > 0 (42)

u(x,0) = sin2irx, v(x,0)= -sin2irx, 0 < x < 1, (43)

The exact solution for a = /3 = 1 is

u(x,t) = sin27r(x - t), v(x,t) = -sin27r(x + t), 0 < x < 1, t > 0 (44)

The case Ia /31 = 1 is neutrally stable and provides an extremely severe test of the time stability
of a numerical method. No central difference scheme of an order greater than two, is time-stable for
this system, in spite of the fact that the spatial operator is stable for the scalar case (a = / = 0).
Examples include the (3-4-3) compact and (3,3-4-3,3) explicit fourth-order schemes, and the (52, 52-
6-52, 52) sixth-order scheme that is shown in reference [4] to be time-stable for the scalar case. All
three schemes used in the scalar analysis (fourth-order explicit and compact and sixth-order explicit),

that satisfy the summation-by-parts property are not time-stable. In all cases, the discrete solution
of the system defined by equations (41) through (44) diverges as time becomes large. Grid refinement

shows Lax stability and an order property for each scheme, but not time stability.

The scalar analysis demonstrates a precise relationship between schemes that are time-stable and
the structure of the eigenvalue spectrum that arises from the discretization matrix. Precisely, if

RH-P eigenvalues exist, then numerical divergence can be expected from the numerical simulation.
Unfortunately, this statement is a function of the CFL that is used to advance the solution. (See
reference [4].) Values of the CFL can be chosen for which no numerical divergence is experienced with
an R-K time advancement scheme; for this reason testing the numerical stability of various spatial

operators for the fully discrete system in time is impractical.
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The alternative is to use the eigenvalue structure of the semi-discrete problem as the test for

stability. If a spatial discretization operator has no RH-P eigenvalues, then it is assumed to be time-

stable. A derivation of the discretization matrix operators for the model hyperbolic system [equations

(41) and (42)] is presented in Appendix III. In addition, the structure of the eigenvalues is derived.

For our test system, we take a = f3 in (44) and thus the sufficient condition for stability becomes
(2- Q) _ r _2 (2+2e -7). Given a value of a and a stable scheme incorporating the SAT

boundary treatment for the system, there exist a range in T for which the time discretization is

stable. As in the scalar case, good agreement exists between the theoretical and numerical stability

limit. Therefore, the agreement between the theoretical prediction and the numerical eigenvalue

determination was used as a test of the validity of the theory.

Table V compares the stability limits of the three high order schemes for various values of tile

parameter a; the theoretical limit is compared with that predicted from the eigenvalue determination

for the 2 x 2 system. The number of grid points used in each case was 101. A study with 61 points

showed similar results. In the study, rr is the theoretical value of r based on 2 2 -_r, and TN

is the value as determined from the eigenvalue determination. Specifically, TN was the smallest value

of r for which the numerical eigenvalues all had negative real parts. In all cases the agreement was

very good, which suggests the validity of the theory.

a 1.0 0.99 0.90 0.80 0.50
Exact r7T 2.0 1.75 1.39 1.25 1.07

fourth explicit TN 2.0 1.75 1.39 1.24 1.05
fourth compact rN 2.0 1.75 1.39 1.25 1.08
sixth explicit rN 2.0 1.72 1.25 1.01 1.00

Table V: The theoretical and numerical stability limits of SAT boundary scheme for various values

of a.

In these simple examples, we have demonstrated that the SAT boundary procedure retains the

formal accuracy of the underlying spatial operator and provides a mechanism to stabilize those spatial

operators that satisfy a summation-by-parts energy property. The resulting scheme is time-stable for

both the scalar and system case. The numerically predicted stability boundaries for the parameter r

closely match the theoretical predictions. From a practical perspective, the numerical stability and

CFL of the fully discrete algorithm are functions of the value of T. The choice T = 2 seems to be

well suited for both the scalar and system cases and guarantees stability even for thle neutrally stable

system case where a = /6 = 1.
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,J. (lonclusions

In this paper we studied the stability and time stability of tile seiii-discrete hylperbolic system

of partial differential equations. The spatial discretizations consideredl were high order (explicit and

compact), and their boundary terms were constructed such that the detrivative inatrix salistied a

summation-by- parts formula.

The following results were obtained:

1. A systematic way was developed to obtain high-order accurate derivative matrices (incluId-

ing boundary terms) having a summation-by-parts property. The method is illust rated by

finding explicit forms in the 4th order compact case.

2. The summation-by-parts property does not, by itself, guarantee the stability and time

stability of the scheme, not even in the scalar case. (Refer to the explicit sixth-order

example cited in the text.)

3. To overcome this difficulty we introduce the simultaneous approximation term (SAT) in

order to account for the effect of the coupling of the physical boundary conditions. The

SAT contains a free parameter -r.

4. We give bounds on T such that the resulting scheme for the system (or scalar) case, we

have stability as well as time stability.

5. Numerical studies verify the theory.
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APPENDIX I

Construction of the Fourth-Order Compact Scheme

We begin with the semi-discrete equation ut = Atu where u = (u], u 2, ... , )T, which results from a

particular discretization of the equation ut = u,. The matrix At is then decomposed as At = P` Q.

The interior scheme used is the fourth-order compact scheme defined implicitly as

1 dui-I dui 1 dui+l _ 3

4 dx + + 4 dx 4.(ui+1 - u(A. 1)
Note that the interior scheme satisfies the summation-by-parts energy norm (as well as the generalized

norm). The matrices P and Q can be written in general form, with boundary closures of arbitrary

size N as

Po,o Po,N 0 qo,o qo,N 0

P Q
* qN,o . . .qN,N 4

PN,O . . . PN,N 4 -3 31 1 7- 4
4 40

0

with the H matrix written as

ho,o . . . ho,N 0

H=
hN,o . . . hN,N X

x y x

0

To simplify the matrix algebra, the following new matrices are introduced:

0 1 0 1 1 0

S= 3 -1 0 1 C 1 4 1S0 -1 0 1 0 1 4 0 14

D= A 0A

0
1 0
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Note that S, C, and D are M x M matrices, where M is an arbitrary number that corresponds to

the number of interior points in the discretization. The structure of the matrices is tri-diagonal in

nature. The matrix A is N x M, and the only non-zero element is aN, - 1.

Thus, we can write H, P, and Q as

[ xA P A
x P = Q=

AT D AT C [ AT 15

where P, Q, and HI are the N x N submatrices that involve the unknown quantities in the matrices

P, Q, and H, respectively.

The spatial operator that involves P and Q satisfies the generalized summation-by-parts energy

norm if a matrix H can be found which simultaneously symmetrizes H P and yields an H Q matrix

that is nearly skew symmetric. By defining W = H P and V = H Q, the matrices W and V become

f-iP + [1AAT xAC + !H^A
W =

xATP +1DAT DC + ± ATA

H 3 xAAT xAS +

xAT -- DAT D S + -4- AT A

Thus, the matrices W and V are important to the stability properties of the spatial operator.

Several notes about the structure of W and V should be made at this point. First, the matrices

A AT and AT A are zero except for the (N, N) and (0, 0) elements, respectively. Second, the matrix

D C + 4 AT A is automatically symmetric and it has the same tri-diagonal structure as the D and

C matrices. Third, the matrix D S + LE AT A is automatically skew-symmetric which includes the4
zero at the (0,0) position. The fourth quadrant of W and V automatically satisfy the conditions on

the generalized summation-by-parts energy norm. The remaining conditions that W and V must

satisfy, written in terms of the submatrices/f/, P, Q, C, D, S, and A, are

HP = (H/P)T  (Al. 2)
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IAT )_T + X CT A T I DA T + xAT (AI.:3)
4 4

f + (fi2)T = 3x AAT+Ao0 oI (Al. 4)

3 AT iT + X ST AT = 3-D AT - xATQ (A1. 5)

4 4

where A b0,0 is the non-zero element that occurs in the first row and colunm of the matrix. This

contribution to equation (Al. 4) allows for a non-zero value at the (0,0) element in the matrix V.

By expanding the specific terms in equations (Al. 2 through Al. 5), we have

ho, hj, Pn,O,,0 . P,n

0 0 0 0
AT HT= A T

0 0 j0 0

qn,o qn,,,n 0 0 1
0 0 I

ATQ .. ; cTAT -- 04

0 0 0 0]

q X
4

ST AT 0; DAT . 0

0 0 0

By comparing the matrices involved in equation (Al. 3), it is apparent that

1 YI hk,N + X bk,N = X PN,k + bkN; k = 0,N (AI. 6)
4 4

Similarly, equation (Al. 5) yields the expression

"3 hk,N = -x qN,k + - 6 k,N; k = 0, N (Al. 7)
4 4

Eliminating hk,N between equation (Al. 6) and equation (Al. 7) yields the expression

qN,k = -3 PN,k + 3 bk,N; k = 0, N (Al. 8)
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These properties of the matrices P and Q must be satisfied regardless of tlie order 1)roperti( s of th le

boundary.

We now derive the additional constraints that must be satisfied near the boundaries to guarantee

the order properties of these points. Substitution of the equations uj = and 1, r-1 to

the matrices Q and P, respectively, yields the constraints that ensure the accuracy of the boiinlar"

points. The general expression at the boundary written in terms of an arbitrary accuracy r l)ecomes

N j- )- N j

. P srj I + - b,N (N + 1)" = qkj + k,N (N + 1) ; k = 0. N (Al. 9)
j=-0 j=0

Third-order accuracy at the boundary points requires r = 0, 3 with N > 3.

Thus far, we have not specified the exact value of the parameter N. We now specify a precise

value for the parameter N so that specific boundary conditions can be derived for the fourth-order

interior Pade scheme. To retain the formal accuracy of the interior scheme, the boundary closure

must be accomplished to at least third-order accuracy, and reqi,'*: hat N > 3. For N =3.

equation (Al. 9) can be written concisely in matrix notation as

0 * 0-1 1 * 00 2*01 3* 02 00 01 02 o2 0 0 0 0

0 *1-1 II * 1 2 * 11 3*12 * P1 1 Iii I3 0 0 0 0
0*2` 1*2' 2*21 3*22= 2 Q 20 21 22 2 3 + 0 0 0 0
0*3-` 1*30 2*3' 3*32 L 30 :31 32 :33 :3 11 10 36

L ~44

Solving this expression for the matrix Q results in the expression

-1•1 3 -__3 1 0 0 0 0
6 2 3-1_- -_1 1 =1 0 0: 3 2 6

- -1 1 1 0 0 0 062 3-=1 q LI 7 -5 17 -23•
3 2 624 _4 T 1T2'-

which relates the matrix Q to the matrix P through third-order accuracy constraints.

We will now solve for the last row of the matrices P and Q and for the last column of the matrix

II. Equation (Al. 9) is written for k = N, and qNj and PN.j (defined in equation (AL. S)) are used

to yield the relationship
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N j- r )-,N j

?" YPNJ + + (N = -3 Y PNJ + • (N + )r+ 3Nr; , = 0,3 (Al. 10)
4=o j 4

Setting N = 3 and solving the system for P3,k, k 0, 3 yields P3,0 = P3,1 = 0, P3,2 = ¼, and P3,3 1.
133 and q3, 0. Similarly,Equation (Al. 8) can be used to show that q3,o = q3 ,1 -- 0, q3,2 = and, q 3  0 imlry

equation (Al. 6) yields the values of hk,3 as ho,3  hi,3 = 0, h 2,3 - x, and h 3 ,3 = y. Thus, the last

row of P and ý are the same as the interior scheme. In addition, the specific form of the matrix/H

must be

ho,o ho,1 ho,2 0
// = hi,0 hi, hi,2 0

h2,o h2,1 h 2,2 x
h3 ,0 h 3,1 h 3,2 y

Thus, accuracy constraints on the last row of the matrices 5 and Q, combined with the structure

requirements imposed by equations (Al. 3) and (AL. 5), allow for the direct solution of the last rows

of P and Q, and the last column of/H. Multiplying the expression relating P to Q by the matrix/:/,

and using the substitutions f Q = V and/ftP = P W yields the expression for V of the form

-11- 3 -1-3 51 0 0 0 0
-_1. -1 1 -•0 0 0 0W i 3

1 - 1 7 -x 17x -23x
_, 3 -3L g ,1y Ii -3 - 24 4 8 12

Solving for W and V such that equation (Al. 2) (where W = WT) and equation (Al. 4)(V + VT =

.. A AT + A 0,oo I) are satisfied to obtain
2

-9a 1536-y+1536)3-899a 768 -y+768/3-703 a 1
5 3 6

-y+15
3 6

/l-1481 a
16 768 192 768

1536 -y+15366 --899 a 0 1536 -y+1536 0-1277 a 768-y+76813-733 a
768 256 192

768 -y+'7683 3--703a cz 1536-y+1536, i--1277 or 0 1536-y+1536 )3-947 a
192 256 768

1536 y+15360 3-1481 a 768 -y+768)3-733 a 1536 y+1536 0-947 a -3n
768 192 768 32

all d
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137 cv-192y -512 y-128/3+525 a 145 cv-144 -y
192 128 48

-512 -y-128 0+525 cc -816 -Y-384)3+737 a -
3 0 7

2,-y-1344/ 3
+3001 0 557 o-576-y

128 48 192 192

145 ck-- 144 -y - 3 0 7 2 
-y-1 3 4 4 0+ 3 001 a - 3 2 6 4,--15 3 6 f3 + 3 011 o -- 1536-Y-384 3+1543,k

48 192 192 384

- 557 o--576 -y -1536-v-384343+1543 o
192 384

with x = 8and y = a. Three arbitrary parameters remnain after all accuracy, symmetry and

skew-symmetry conditions are satisfied.

The final step in the discretization is to find a specific form of the matrix P that will lead to a

simple algorithm. Because the matrix P is tri-diagonal in the interior, the boundary closure should

retain the tri-diagonal structure. After P is specified, we can solve for the matrix H from H = VP-'

if the inverse of P exists, and the last column of f is [0, 0, y, x]T. The matrix Q follows imnlediately

from Q = P Vý-' W4. The last test is to ensure that both W'V and that the full matrix It are positive

definite.

Many matrices P have been found that satisfy all of the criteria given in the generalized summation-

by-parts energy norm analysis. From a numerical perspective, all behaved similarly. The results

presented here are those that were the simplest to code. Choosing a specific matrix of the form

211 1 0 0
429

356_.3 -__1
T6 88 8T

0 43 1893 139
17 1054 186

0 0 1 1
4

yields a matrix Q of the form

-289 279 75 -7
234 286 286 2574

-8635 6987 1851 -203
3376 3376 3376 3376

-15043 -4089 147 29353
18972 2108 124 18972

0 0 -3 04

The resulting matrix ft is therefore
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70282007653 -9426299 -192913 0
7658388480 2268480 1067520

-55530689643 8051589 149823 0

2552796160 756160 355840

63842626133 -9153739 -4433 -1
2552796160 756160 355840 8

-71498870443 10110149 102703 1
7658388480 2268480 1067520

i.From a practical point of view, the inconvenient form of tile H/ matrix is not of great concern

since the matrix H is only inverted once and one colunil is stored for use.

The matrices P, Q, and H can be used to establish both the symmetry of the matrix V and the

near skew-symmetry of the matrix W. The first six rows and columns of the V matrix are

16513 -261 2993 -6223 0 0
46080 5120 15360 46080

-261 9153 -2943 1611 0 0
5120 5120 5120 5120

2993 -2943 7473 -2063 -1 0
15360 5120 5120 15360 32

-6223 1611 -2063 47953 1 -1
46080 5120 15360 46080 8 32

0 0 :--- 15 1
32 8 16 8

0 0 0 - 1 15
32 8 16

The first six rows and columns of the W matrix are

-9 45 -11 -7 0 0i
16 64 128 128

--. 0 81- 9p 0
64 128 128

11 -81 0 41 -3 0
128 128 64 32

7 -9 -41 0 __3

128 128 64 4 32

0 0 3 -3 0 .3
32 4 4

0 0 0 -_ =2 0

32 4

As shown, the matrix W is nearly skew symmetric, and the matrix V is symmnetric. For the matrix W

is positive definite, it is necessary to show that every submatrix is positive definite. The inner scheme

is diagonally donlinant and contributes to the definiteness of the complete matrix W4. However, the
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boundary elements are not diagonally dominant, and suppress the positive-detiititeciess. l'he I x I

boundary matrix lV' = + 4 A A" has the following characteristic polynomial
1 4

754974720 A4 - 3507814,100 A3 + 5299068928 A" - 3079,323124 A + 53677979.1 = 0 (Al. 11)

The symmetry of the Vi"' matrix and the alternating signs of each term ini t he cliaracterist ic poly •oiial
g'uarantee that the matrix is positive definite. The characteristic polynomial of every silclilatrix (up
to tel points, which includes four boundary and six interior points) of thC, matrix It results I i

positive definite matrix. No proof that the complete discretization is positive definite for an arlbit rarv

number of interior points has been found.

The accuracy of the new scheme is third order at the boundaries and fourlh order iII the interior.

To show this, the Taylor expansion for long wavelength modes is made using the stencil at each of

the first four points. The results are

17 ý4

640
43 4

2016
98 4

2005
1

i - i -'V + t...
180

(Al. 12)

At high resolution, the boundary points behave with third.-order truncation error: the Inl erior behaves

with fourth-order error. Therefore, the resulting scheme is formally fourth-order accurate.
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APPENDIX I1

Sixth Order Explicit Scheme

Here, we derive an explicit scheme that is formally sixth-order accurate. Unlike the fourth-order

compact case presented earlier, the matrix H can be the identity nmatrix. To constrain the muatrix P

to be symmetric and the matrix Q be nearly skew symmetric, six alternative formulas are required

at the boundaries, each of which is closed to fifth-order accuracy to retain the formal accuracy. The

corner 7 x 7 submatrices of the global matrices P and Q can be written as

2113 18487 553 14759 (-29269) 54839 0
10800 345600 57600 172800 172800 345600

18487 175781 (-28361) 129329 (-346319) (-19061) 0
345600 51840 6912 34560 207360 172800

553 (-28361) 43807 (-915) 126833 (-39307) 0
57600 6912 5184 128 34560 518400

P6 14759 129329 (-915) 67769 (-25289) 34811 0
172800 34560 128 8640 6912 172800

(-29269) (-346319) 126833 (-25289) 156053 (-21059) 0
172800 207360 34560 6912 51840 115200

54839 (-19061) (-39307) 34811 (-21059) 32569
345600 172800 518400 172800 115200 32400

0 0 0 0 0 0 1

(1) 1235503 (-859597) 398 (-603059) 14969 0
2 1036800 518400 225 518400 41472

(-1235503) 0 16343 (-68005) 186797 (-184657)
1036800 5760 20736 69120 172800

859597 (-16343) 0 128759 (-18743) 3799
518400 5760 51840 6912 2700

Q6 (-398) 68005 (-128759) 0 110351 (-607693) 1_

225 20736 51840 51840 518400 60

603059 (-186797) 18743 (-110351) 0 376549 (-3)
518400 69120 6912 51840 345600 20

(-14969) 184657 (-3799) 607693 (-376549) 3
41472 172800 2700 518400 345600

0 0 0 (- 3)- (-3) 0
60 20 4 0

The characteristic polynomial of the matrix P6 is

10399739562845798400000000 A6  - 2485t2609916244983808000000 A5

+ 100:3578630643249838161920000 A4 - 1639038223:37723736805 1712000 A3
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+ 1248376737213799711434406800 A2 - 412235365042816633559197440 A

+ 37455444120716264727507839 = 0 (All. 1)

The symmetry of the matrix P 6 and the alternating signs of the terms in the polynomial are sufficient

for positive definiteness of both the matrix P6 and the global matrix P.

The truncation error at the boundary points is

+ 64482999974515473972444676 +224732664724297588365047034

551784593419970625547321ý6 +
1123663323621487941825235170
90378114042816098962729619•6

- 2247326647242975883650470340

+ 62520732887440126777806839ý6 +i•+ 2247326647242975883650470340+

215210210826949659177331 6

1123663323621487941825235170
7101580254197116302053905ý6 +

224732664724297588365047034
(All. 2)

which indicates fifth-order accuracy at the six boundary points.
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APPENDIX III

Ei genvalues of the Discrete System

The eigenvalues of the senmi-discrete system are used in the results section to compare the theoretical

and the numerical stability boundaries. The model equation is the hyperbolic system used in the

main text and defined by equations (41 ), and (42). For convenience, we define the (N + 1) x (N + 1)

matrix A P-1 Q. The matrix A contains all the information from the spatial discretization

operator The semi-discrete form of equation (41) becomes

du

dt
SAv= 0, t >0 (AIII. 1)dt

with the boundary conditions defined by equation (42). In matrix notation, the discrete system takes

the form

At aB

0 t
K3J-'BJ J-'AtJ

where

V1/

1 
N - I

Uf= Z At
O0

dIIUl

1 N,-, 0  0 (10N .. .0N-i.N-1
(I] N , 1 (1 N , '2 . . . ( 1 N , N - I N , N,

a 1,o 0 00 1

(12,0  0 0 . . . 0 0 1

B.. =

aN-1,0 0 0 . . 0 1 0

aN,O 0 0 . . . 0
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Note that JJ = I, so that J = J-'. The vector a is the concatenated vector of discrete values

from the scalar vectors u and i with the elements uo and IN removed. These elements are removed

because the physical boundary condition relates them to known elements in the vector i, so that and

need not need to solve for them. The matrix At is the N x N submatrix of A which is obtained by

eliminating the zeroth row and zeroth colunmn. Note that this was the matrix that was analyzed in the

scalar analysis to determine time stability of the spatial operator. The matrix B is zero everywhere

except the first column, where the zeroth column of the original A matrix is written. This column is

precisely the coupling between the it and v vector, which occurs at the boundary.

It is instructive to relate the system eigenvalues to those obtained in the scalar analysis [(At -

A I) u = 0]. By defining the matrix H- 1 and H as

1 vl V/-a-J] I V//al Ivl

H-1 -- -t==;H=S-•2 1 /aI d 7 V.-HJ 0-

with H-` H = H H-' = 1, we note that the system matrix can be made block diagonal with the

similarity transform H

01 l V,-a- J At a B V/-[v I -V/.-l

7/ - 1l VrO JJ-BJ d-JAtJ v/JJt/-•d0

[ At + fJBJ 0

0 At - v 7BJ

For scalar time-stable spatial schemes, the eigenvalues of the matrix At are bounded to the left half-

plane. Note that for a = 0 (or/t = 0) the contribution from the boundary coupling matrix B is

identically zero, and the eigenvalues of the resulting system are simply the scalar eigenvalues with

a multiplicity of two. For non-zero values of the parameters a and /3, the eigenvalues of the total

matrix are different from those of the original matrix At. Also note that two distinct eigenvalue

scenarios exist for the boundary parameters a and /, depending on whether their signs are equal or

opposite.
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